Omnipresence of viscous flow in graphene devices

Imaging the complex streaming patterns of electron flow in graphene field-effect transistors, researchers from RWTH Aachen University and AMO GmbH have found evidence for local spots of viscous electron flow even at room temperature in devices with moderate mobility, implying that viscous electron flow is omnipresent in graphene devices. The results have been reported in Nano Letters.

Continue reading “Omnipresence of viscous flow in graphene devices”

A new paradigm of THz-energy harvester based on graphene

Future-shaping concepts such as wearable electronics and the Internet of Things are driving the quest for low-power electronics and for energy harvesting at the device or at chip level. Researchers from AMO GmbH, RWTH Aachen University, Chalmers University and the University of Wuppertal have now developed a novel type of flexible energy harvester, which shows good prospects for powering wearable and conformal devices.

Continue reading “A new paradigm of THz-energy harvester based on graphene”

An accurate measurement of the spin-orbit coupling in single-electron bilayer graphene quantum dots

For applications in spin-based electronics and quantum computation, it is crucial to understand quantitively how the electron spin is coupled to the orbital degrees of freedom. In bilayer graphene this is a notoriously difficult task, given the tiny size of the energy scales involved. Researchers from RWTH Aachen University have now managed to accurately measure the spin-orbit coupling in single-electron bilayer graphene quantum dots, exploiting the extreme energy sensitivity of a double-dot device. The result has been reported in Nature Communications.

Continue reading “An accurate measurement of the spin-orbit coupling in single-electron bilayer graphene quantum dots”