Perspective article in Science by Markus Morgenstern and Mark Goerbig.

Following the recent progresses made by the Yazdani group in visualizing broken symmetries and topological states caused by the interaction between electrons in graphene under high magnetic field [1], Markus Morgenstern and Mark Goerbig have released Perspective article in Science [2], where they review in a very accessible language the basic physics beyond the observed effects.

[1] Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet
X. Liu, G. Farahi, C.-L.Chiu, Z. Papic, K. Watanabe, T. Taniguchi, M. P. Zaletel, and A. Yazdani
Science 375, 321 (2021).  DOI: 10.1126/science.abm3770

[2] Many-particle electron states in graphene
M. Morgenstern and M. Goerbig
Science 375, 263 (2022).  DOI: 10.1126/science.abn2049

Progress towards flexible, low-power transceivers based on MoS2

Scientists from RWTH Aachen University, AMO GmbH, EPFL and Aixtron SE have demonstrated the first power detectors based on Molybdenum  disulphide (MoS2) that operate at zero bias. The fabricated  circuits function in Ku-band  between  12  and  18GHz, and are the best-performing  power  detectors  fabricated  on  flexible  substrate  reported  to  date. Their dynamic range exceeds 30dB, outperforming   other semiconductor   technologies, like silicon complementary metal oxide semiconductor (CMOS) circuits and GaAs Schottky diodes.

Continue reading “Progress towards flexible, low-power transceivers based on MoS2”

Omnipresence of viscous flow in graphene devices

Imaging the complex streaming patterns of electron flow in graphene field-effect transistors, researchers from RWTH Aachen University and AMO GmbH have found evidence for local spots of viscous electron flow even at room temperature in devices with moderate mobility, implying that viscous electron flow is omnipresent in graphene devices. The results have been reported in Nano Letters.

Continue reading “Omnipresence of viscous flow in graphene devices”