Near perfect particle-hole symmetry in graphene quantum dots

Researchers at RWTH Aachen University and Forschungszentrum J├╝lich have uncovered important characteristics of double quantum dots in bilayer graphene, an increasingly promising material for possible applications in quantum technologies. The team has demonstrated near-perfect particle-hole symmetry in graphene quantum dots, which could lead to more efficient quantum information processing. The study has been published in Nature.  

Artist impression of bilayer graphene hosting a symmetric electron-hole double quantum dot, where the electron and hole are located on the different layers. Credit: Sebastian Staacks
Continue reading “Near perfect particle-hole symmetry in graphene quantum dots”

An accurate measurement of the spin-orbit coupling in single-electron bilayer graphene quantum dots

For applications in spin-based electronics and quantum computation, it is crucial to understand quantitively how the electron spin is coupled to the orbital degrees of freedom. In bilayer graphene this is a notoriously difficult task, given the tiny size of the energy scales involved. Researchers from RWTH Aachen University have now managed to accurately measure the spin-orbit coupling in single-electron bilayer graphene quantum dots, exploiting the extreme energy sensitivity of a double-dot device. The result has been reported in Nature Communications.

Continue reading “An accurate measurement of the spin-orbit coupling in single-electron bilayer graphene quantum dots”